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ERROR BOUNDS FOR QUASI-MONTE CARLO 
INTEGRATION WITH NETS 

CHRISTIAN LECOT 

ABSTRACT. We analyze the error introduced by approximately calculating the 
s-dimensional Lebesgue measure of a Jordan-measurable subset of Ps = [0,1)5. 
We give an upper bound for the error of a method using a (t, m, s)-net, which 
is a set with a very regular distribution behavior. When the subset of Is is 
defined by some function of bounded variation on Is1, the error is estimated 
by means of the variation of the function and the discrepancy of the point 
set which is used. A sharper error bound is established when a (t, m, s)-net 
is used. Finally a lower bound of the error is given, for a method using a 
(0, m, s)-net. The special case of the 2-dimensional Hammersley point set is 
discussed. 

INTRODUCTION 

Applications of quasi-Monte Carlo methods arise in problems of numerical anal- 
ysis that can be reduced to numerical integration. For s > 2 let I' = [0, 1)' be the 
half-open s-dimensional unit cube, and AS be the s-dimensional Lebesgue measure. 
If E is a Jordan-measurable subset of Is and P is a set of IPI points x, .. ., xlp 
evenly distributed over IS, the volume of E can be approximated by 

A(E, P) 

{PI 

where A(E, P) is the number of p's, 1 < p < IPI, for which xp E E. An analysis of 
the error 

(1) A(EP) _ )As(E) 

was given in a paper of Niederreiter and Wills [5]. The error was bounded by means 
of D(P)1/8. The discrepancy D(P) of the point set P is defined by 

D(P) = sup ('p) -s (J) 
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where J runs through all subintervals of Is. We focus on special point sets P, which 
are called nets. The following definitions were given by Niederreiter [3]. Let b > 2 
be an integer. An elementary interval in base b is an interval of the form 

ff yI[ aiai + ) bd2' bd2 ) 

with integers di > 0 and integers 0 < ai < bdi for 1 < i < s. Let 0 < t < m be 
integers. A point set P of bm points in Is is a (t, m, s)-net in base b if A(J, P) bt for 
every elementary interval J in base b with As (J) = b''. Discrepancy bounds for 
nets are given in the article of Niederreiter [3]. They can be used in conjunction with 
the estimation of Niederreiter and Wills to-obtain error bounds. It is much simpler 
to estimate the error directly and an improved upper bound can be established. 

The following case deserves special attention. Let f Is-l I be a function of 
bounded variation in the sense of Hardy and Krause. We refer to the monograph 
of Niederreiter [4] for the definition of the concept of variation. Define the set 

Ef = {x= (x',xs) C Is: xs < f(x')}. 

For any set P of {Pi points x1,... ,xlpl in Is, we have 

(2) A(Ef 1P) 
)-As(Ef) = ZCEf(Xp)- CEfdAS 

where CEf is the characteristic function of Ef. The Koksma-Hlawka inequality (see 
below) cannot be used to derive an upper bound for the right-hand side of (2), 
because the variation of CEf can be infinite for a very smooth f ( let for instance 
f (x') = x1). In an earlier communication [1], we give an estimate of the left-hand 
side of (2) by means of the variation of f. The analysis used the estimation of 
Niederreiter and Wills. An improved upper bound is directly established in the 
present paper. In the case where P is a (t, m, s)-net, there is a different method of 
proof which yields a better result. 

Finally some lower bounds for the error (1) are established, which are not too 
dissimilar to the upper bounds. The analysis is restricted to (0, m, s)-nets and uses 
techniques of Schmidt [6]. For the 2-dimensional Hammersley point set (see [4]), a 
better result is given. 

An outline of the paper is as follows. In ? 1 we derive an upper bound for the 
error (1) when the point set is a (t, m, s)-net in base b. In ?2 we give an estimate 
of the left-hand side of (2). A smaller bound is given when P is a net. In ?3 we 
establish some lower bounds for the error (1) when P is a (0, m, s)-net in base b. 

1. UPPER BOUNDS FOR NETS 

We recall the result of Niederreiter and Wills, when the original Euclidean norm 
is replaced by the maximum norm x max,< <5 -x2 < . For E > 0 define 

E, = {x E Is :3y eE E x-Yll < e}, 

E,5 = {xCIs Vy C Is \E llx-yll >E} 
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If there exists a positive nondecreasing function of defined for all E > 0 such that 

Ve > 0 max(As(E, \ E), A,(E \ E-)) < u(c), 

then 

A(E,P) ( ?3 ( D /1 1 + D(p)l/s 
IPI - As (E)- 

< 
f 

3 LD(>P)1S J + D(P)l 

If, in addition, {xS (x', x E} is a subinterval of I containing 0, for every 

Proposition 1. Let E be a Jordan-measurable subset of IS arid P be a (t, m, s)-net 
in base b. If there exists a positive nondecreasing fulnction of defined for all ? > 0 
such that 

Ve > 0 max (AS(EE \ E), AS(E \ E-?)) <C(e), 
then 

A(E,PP) - (E) 

Proof. Let d =Lmtj. For a =r(an,...,as) with integers an, 0 < ai < bd, define 
'a = 171>- [ai a?) Let 

E_ = U Ia and Ei = U Ia. 
IaCE IaOE#/J 

Then 

A p) -A(El)-A8(E\E_) < A(EPP) -A(E) 

A(Ep) A- As (E) < (Ep A ( )L+A (F \E) 

IPI ~ ~PP Proof.bsets E_ an For ar dijon (a,,n of eleme,)wihntaryinervas ai<a wit b deine 

F\FR ihence A (E\ )<()E_ U Ia and E \ECEU \EI henceaA(E+\E)? 

2. UPPER BOUJNDS FOR SPECIAL SUBSETS 

Let fJs I-* I be a function of bounded variation V(f). Then define Ef by 
Ef = {X= (X', X5) c IsP x < f (X')} and let CEf be the characteristic function 
of Ef. If F' is a set of IP'I points xl, . .. ,x>p,i in 1s-1 and P is a set of 1Pt points 

x1) .,xl in Is the integral 

ii fdA8i i s CEfdAs 

IPIs- P IS 



182 CHRISTIAN LECOT 

can be approximated by 

1 P'l 1 1 

| p, ,f (xp) or by Z CEf (Xp). 
1 = 

The second approximation, where the numerator is an integer, can be useful for 
numerical simulation (see [1, 2]). In the first case, an error boLund is given by the 
Koksma-Hlawka inequality 

p,l f (xp)- fdAS-1 < V(f)D*(P'). 

The star discrepancy D*(P') of the point set P' is defined by 

D* (P') = sup A(J p, ) -A>s-O() X 
J IP1 

where J runs through all subintervals of Is-' containing 0. In the second case, we 
have the following error estimate. 

Proposition 2. Let P be a point set of IPI points in Is and f: Is-' + I be of 
bounded variation in the sense of Hardy and Krause. If D(P) < V(f), we have 

AE ) - A,(Ef) < sV(f) [ ( P{f))/ | 

Proof. We shall prove somewhat better but more complicated estimates. Let 
ni,... ,n= be integers. For a' = (a,,...,a,-,) with integers ai, 0 < ai < ni, 
define 'a' = FI [t ai+X ) and let 

E =U I/ x [O, inf f), E U Iai x [0, sup f ), F U Ia' x [inf f, sup ]f 

Then 

A(P)_ A (E) - s (F) < 
A(Ef I P) As (E ) < 

A(EP P) _ 

If V(f) < D(P), choose nz- = n, = 1. Then 

A(EfIP) A-,(Ef) < D*(P)+supf - inf f. 
IPI P1 bp 

Suppose V(f) > D(P). The subsets E and E are disjoint unions of subintervals of 
is, hence 

A(f, P) A(El P) 
_As (E) :~ ?D(P)flni and -A k(E) ?D(P)}7Jni. 

IPI IPI~~~~~~= 
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We have A, (F) < V( f ) ,SJ 1 I by Lemma 1 (see below). Therefore, 

, F) 
?As(Ef) < D(P) fni +V(f)Z' 

Put x = ( 1/s and r = s logx-l1gLxj -1. If r =-1 or 0, let nri= = Pu =D>P) 1oTg( LxiJ+1)-1ogLxjj 
ns-I Lxi. Then 

- A _;s(Ef)l < V(jf) tVwv) + (L )s ) 

which yields the desired bound. If 0 < r < s - 1, let ni = LxI + 1, for 1 < i < r, 
and ni = Lxi, for r < i < s -1. Then 

A(EfIP) - (Ef ?r+ V 

which yields the desired estimate. O 

Lemma 1. Let f be a function of bounded variation on Is. Let n1, .. ., nr be inte- 
gers. For a = (a, ... , a,) with integers a,, 0 < a, < n,, let Ia = 1-ri [, ai+1) 

and Ya, Za E Ia. Then 

S f(ZYa- f(Ya) < V(f)Fr ni Z- 
a i=1 i=1 

Proof. If y, z E Is, let T(i) f be the restriction of f to the hyperplane xi = yi and 

A(zy) f = T(i) f - T($)f . If K = {i,... , ik} C [1, s], we set 

K = .. T(%k)f and K(z,y)f = 'A(z,y) A(.. k) f 

We put Tyf =- Tyl8] f. Let 1 = (1,...,1), a+ = (a, +1,...,a+ 1) and xa= 
(a,.. ., ,). The desired estimate is established by combining the following iden- 
tities: 

f (Za) - f(Ya) = Z/(z)Ty[la TT[a+ ls]f 
i=1 

(_) AK TK 0 
Twf =Z(w1)T E (Xa+,W)xa+f, for wE la and 

k=O Kc 1, ) 
#K=k 

Txa+fZ= E (_1)k 5 E /K x,)T1Ktf. TX.+ f ~~~~~~~~(xb+,b 
k= () q[l,91 aibi<ni 

#K=k iEK 

When P is a net, an improved estimate can be established. We shall use the 
following lemma of Niederreiter [3, Lemma 3.4.(ii)]. 
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Lemma 2. Let P be a (t,rm, s)-net in base b. For any elementary interval J' c 
IS-l in base b and for any x, E I one has 

A(J' x [O,xs),P) _ 

P -~As (JI x [O xs)) ? btm 

Proposition 3. Let P be a (t, m, s)-net in base b and f Isl * I be of bounded 
variation in the sense of Hardy and Krause. If bt-m < V(f), we have 

A(Ef,IP) _ o 1g V(fM - - As(Ef) < sV(f)b- Lmt+lsog b 

Proof. Let dl, . . , ds 1 be integers and replace ni by bdi in the proof of Proposition 
2. If V(f) < bt-m, choose d1 0ds- = O. By Lemma 2, we have 

A(Ef,I P) A 5(Ef ) < bt-m + supf - inff 
IPI ~ ~ ~ ~~js1 IS-' 

Suppose V(f) > bt-m. By Lemmas 1 and 2, we obtain 

A(Ef, F') - iA (Ef ) < bt m+d1++ds1 + V(f) E-i 

zdi 
ipi~~~~~~~~~~~~~~~i 

Put x = m-t + logV7(f) and r= Lsxi-sLxi-1. If r =-1 or 0, let d1= - 
ds_1 = Lxi. Then 

A(Ef,IP) 5(f (sX-M -) 
p As(Ef) < V (f)b-1L t+ og?() d (bs( Lx- s1 

which yields the desired estimate. If 0 < r < s - 1, let di = Lxi + 1, for 1 < i < r, 
and di Lxi, for r <i < s-1. Then 

A(f F)i As(Ef) < V(f)b-Lsm t+lo1(g)j (bLsxisxl + s - r (1 - b 

which yields the desired bound. O 

3. LOWER BOUNDS FOR NETS 

We want to show that the order of magnitude of the bound in Proposition 1 is 
best possible. We shall establish a lower bound for the error (1). We refer to the 
lectures of Schmidt [6, Theorem 13.B] for a similar result. Since a (0, m, s)-net in 
base b is also a (t, m, s)-net in base b, for any t < m, it follows that an interesting 
lower bound is only available for t = 0. We recall the following result of Niederreiter 
[3, Corollary 5.11]. 

Lemma 3. For m > 2 a (0, m, s)-net in base b can only exist if s < b + 1. 

If x > 0, let Fxl be the smallest integer > x. 
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Proposition 4. Let P be a (0, m, s)-net in base b. There exists a subset E of P1 
with 

V? > 0 max (As (E, \ E), As(E \ E-,)) < (2- + 1) 

and 

A(Ep P) - As (E) > 4( I)m )if s divides m, 
A(E, P) _ 1-'(E) > 

I otherwise. 

Proof. We shall prove sharper but more complicated bounds. Let dl,... , ds be 
integers with d1 + + ds m. For a' = (a1,.. ., as-) with integers ai, 0 < ai < 
bdi, define 'a' ]Jiif [jii. a'il ) and a,(a') = a, + + a,-,. Let 

_(a') = + (a(a' ? + 2A (ia, x -as(a') + 1/2 as(a') + 1) 

if a5(a') < bds; otherwise o(a') = 1. Let i(a') -o (a') + ,if as(a') < bds; 
otherwise o(a') = 1. Let 

E=UIa' x [0,a(a')), E=UIax x[O)(a')). 
a' a' 

Let ? > 0. We have E? \ E C F(?) U G(F), where 

F() U JIa, x [a(a'), a(a') + ), 
a' 

s_ aj aj _ (ai ai ___a a + 

GiW I I bdj' bdj ) kib bdi b I bdj bdj 
zia' '=Il,- =i?1\\di 

x [c(a' ) + e, ao(a') + 6), 
a/ (al, ... .,aj_,a1 - l,ai+,. ..,as-). 

Furthermore, 

E \ E C UIa, x aL(a'),ca(a') + (-d ( bdil + + 

On the other hand, we have E \ E-6 C F(-_) U G(') , where 

F_ ) U la' x (o (a')-?, a-(a')), 
a(a')<1 

s-i iFa a?N a? a? 
G( =U u 

1 
ab 

a + 
d ai + 1 ai +I ) 

i=1 cs(a')<1l j=1 bi bdb 'bd 

II abj 'abj + 1 ) +E xc(a (a)-e, (a' j)], 

a/= (a,, . .. , ai_1, ai + 1, ai+, . * ., ), 

/3(a') =- a(a') - s if o(a') < 1; otherwise ,3(a') = 1. 
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Furthermore, 

E \ E_s C U al x (a(a') - bds (FEb di + 2 - E6,(a<)) 
a / 

Similar results are available for E. By the definition of E and E, we have 

A(r IP) _ As (E) + A(Er P) _A ri5 E 

= 2bm#-tat O?N'-1 ? < ai < bdi for < i < s and aS(a) < bds}. 

If s divides m, let d1 = =ds = d = m. Then 

E > 0 max (As(E,\ E),/\s(E \ E-_E),/\(E,\ E),As(E \ E_)) < c(E), 

where 

(bd+s2 2) s-2 ((1 + Eb (S [6bd] + 1/2 
oj6) mm (b(s-1)d +(ds3)b(s81)d - ,+ - bd+ ) 

On the other hand, we hlave 

max 
A 

(, p) - A s(E), I(Ep P) _ As(E > (- )b )' 

which yields the desired result. If s does not divide m, let dl = =d_ = d 
Lm] and d, = m - (s - 1)d. By Lemma 3, we have 

VE > 0 max (A. (EF \ E),A >(E \ _E-) I s (Ee \ E) I s (E \ E-e)) < a(E)I 

where 
(1 + Ebd)sl - 1 (S 1) FEbd1 + 1/2 

o\E) =min E bd ,+bda 2 

On the other hand, we have 

ma A (El P) E (E) P A(EP) - 0- __d 

which yields the desired result. D 

In the 2-dimensional case, a sharper estimate is available for the Hammersley 
point set in base b, 

P={(pb`,Ob(P)) : 0<p<bm} 

where /b is the radical inverse function in base b (see [4]). It is easily seen that P 
is a (0, m, 2)-net in base b. 
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Proposition 5. Let P be the two-dirmensional Hammersley point set in base b and 
let T = {(x1,x2) E I2 : x2 < xi}. Then 

Ve > O max (A2(T, \ T), A2(T\ T_)) < 2& 

and 
A (TP) A2(T) 2bL'2i 

Proof. A point (x1,x2) E P if and only if (x2,xl) E P. Moreover, bLm+'J points of 
P lie on the line x1 = x2. Hence the result of the proposition follows. El 

Beside the class of (t, m, s)-nets, a class of sequences, called (t, s)-sequences was 
introduced by Niederreiter [3]. By his techniques, error estimates for (t, s)-sequences 
can be obtained from error estimates for (t, m, s)-nets. 
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